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A B S T R A C T

Background: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lip-
ids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However,
deep lipid profiles of major chronic inflammatory diseases have not been compared.
Methods: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory dis-
eases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and
systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analy-
sis without liquid chromatographic separation and compared to each other and to age-matched controls.
Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based
on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other
and from the controls.
Findings: Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from
controls based on independent validation test set classification performance (CVD vs control - Sensitivity:
0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control � Sensitivity: 1, Specific-
ity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specific-
ity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups
from each other and from the controls, and partially separated CVD severities, as classified into five clinical
groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment.
Interpretation: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid
profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes.
Funding: Full list of funding sources at the end of the manuscript.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Lipids in the plasma reflect diet and metabolic characteristics of
an individual [1] but are also known to regulate inflammatory
responses both positively and negatively [2�4]. In the case of inflam-
matory processes cell stress and death also release internal cellular
lipids into the blood. It might, therefore, be expected that chronic
inflammatory diseases alter the plasma lipidome in a manner that is
characteristic of the chemistry of the cells/tissues primarily involved
in the disease. With this reasoning we examined the lipidomes of
patients suffering from cardiovascular diseases (CVD), ischemic
stroke (IS), and systemic lupus erythematosus (SLE) and compared
them with the lipidome of age-matched controls who were not
known to suffer, or to have suffered, from any of these diseases.

The role of inflammation and lipids in atherosclerosis is well
established [5�7]. There is a reasonably large amount of literature
[7�29] on the profiling of lipids in plasma and atherosclerotic pla-
ques in CVD cohorts. The emphasis of previous studies has been on
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the association of plasma lipid species with CVD-risk stratification
and CVD-related mortality [8,10,11,13�24], improved classification
of stable and unstable CVD states [25], correlation with established
diagnostic tools for CVD [22,26], genetic risk factors for CVD
[10,22,27], association of CVD with co-morbidities [8,18,28,29], and
association of CVD with changes in lipid biochemistry in the plasma
[30]. In general, the different lipidomic profiling studies differ in the
methods and definition of clinical outcome subjected to lipidome-
based classification. This means that the clinical outcome and lipids
profiled differ across studies. Consequently, consensus targets from
multiple studies are still unobtainable. Nevertheless, common to all
studies are the highly sensitive changes in lipid profiles depending
on the clinical outcome evaluated. Table S1 summarizes individual
lipids associated with CVD or CVD risk factors from past studies.

SLE is a chronic inflammatory disease. Its etiology displays multi-
factorial characteristics and the molecular mechanisms of this disor-
der are largely unknown [31�33]. A notable aspect of this disease is
the excessive production of reactive oxygen species that oxidize cel-
lular lipids producing derivatives that cause dyslipidemia and dysli-
poproteinemia [34,35]. The dyslipoproteinemia signature has been
identified in SLE patients with markedly increased age-specific inci-
dence of cardiovascular disease [35]. Lipidomics of the plasma of SLE
patients has been previously reported [36,37].

In this work we enquired whether it would be possible to charac-
terize the lipidomic profile of different manifestations of essentially
the same clinical disease (different degrees of CVD and IS) and
whether the lipidomic profile of two distinct diseases that only had
inflammation as a common characteristic could be distinguished
from each other and used as a diagnostic identifier. Furthermore, the
accuracy as a diagnostic identifier was evaluated on an independent
test data set.

Despite the preliminary efforts and promising results based on
Liquid Chromatography-Mass Spectrometry (LC-MS) lipid profiling,
identifying individuals at risk for stroke and cardiovascular events
from a healthy control population remains a challenge. Time invested
per sample constitutes a barrier for large scale clinical validation and
implementation of lipid profiles (e.g. the Liquid Chromatography (LC)
dimension of previous studies is time intensive (see [38] and referen-
ces therein)). In this study we evaluated classification performance of
lipid profiling based on shotgun Mass Spectrometry (MS) without LC
lipid separation prior to MS. A total of 596 lipids were profiled in a
total of 427 individuals.

2. Methods

2.1. Patient samples

Plasma samples were obtained from a total of 427 individuals.
Baseline characteristics are outlined in Table 1. Control (n = 85) were
taken from the population of the Coimbra and Lisbon, Portugal,
regions. They were healthy volunteers who satisfied the criterion
that they had never had any CVD- or SLE-related health complaints.
The CVD patients (n = 217) were divided into 6 groups. CVD1 (n = 67)
contains individuals who went to the hospital with chest pain but
had no indicators for stable angina pectoris, unstable angina pectoris
or myocardial infarction. CVD2 (n = 76) are patients with stable
angina pectoris (SAP). CVD1 and CVD2 are defined according to the
ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guidelines [39]. CVD3 (n = 14)
contains patients with unstable angina pectoris, CVD4 (n = 39) are
patients who suffered an acute myocardial infarction with no ST-ele-
vation in ECG, and CVD5 (n = 21) are patients who suffered acute
myocardial infarction with ST-elevation in ECG [40,41]. CVD3, CVD4,
and CVD5, together, may be classified as patients with an acute coro-
nary syndrome (ACS). CVD1 through CVD5 groups were all obtained
from Hospital Santa Cruz, Carnaxide, Portugal. Acute ischemic stroke
(IS) (n = 21) were patients admitted at the emergency room of the
Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal, who suffered
from acute ischemic stroke. The SLE cohort (n = 104) were patients
from Hospital Dr. Fernando Fonseca, Amadora, Portugal. The inclu-
sion criteria were all patients diagnosed with the pathology and
above 18 years old. The exclusion criteria were the existence of seri-
ous renal and hepatic pathologies, cancer or existence of infectious
diseases. All the lupus patients had active disease but were all stable
on medication. None was flaring at the time of the study (no A or B in
BILAG) [42] nor were any patients in clinical remission (D and E only
in BILAG). The study design is summarized in Fig. 1.

2.2. Ethics

A written informed-consent was obtained from all the partici-
pants in this study or from their legal representatives. The study was
approved by the Ethical Review Board of the Faculty of Medicine of
the New University of Lisbon (n°06/2015/CEFCM) and the Ethics
Committee for Health of the Centro Hospitalar de Lisboa Ocidental,
that includes the Hospital Santa Cruz, the Hospital Egas Moniz and
Hospital S~ao Francisco Xavier, and the Ethics Committee for Health of
the Hospital Fernando Fonseca. All experiments were performed in
accordance with the guidelines and regulations including, the Uni-
versal Declaration on Bioethics and Human Rights of UNESCO, 2005;
The Charter of Fundamental rights of the EU, 2012; Ethical principles
for medical research involving human subjects - Declaration of Hel-
sinki, 2013; EU Regulation 2016/679 and Good Clinical Practice
guidelines (Directive 2001/20/EC) and EU Clinical Trials Directive
(2005/28/EC). Moreover, they complied with national legislations for
the scientific use of human biological samples (Law N° 12/2005 and
N° 131/2014).

2.3. Blood samples collection and processing

Blood samples were drawn into tubes containing an anti-coagu-
lant (heparin or EDTA) immediately after admission into the hospital
and signing of the informed consent. The samples were kept at 4 °C
and processed within 24 h from collection. Plasma was obtained by
centrifugation of the blood at 500 g for 10 min at 4 °C, frozen at �80 °
C and stored at this temperature until they were used for the lipido-
mic analysis.

2.4. Definition of age matched controls

The total control cohort consisted of individuals with ages
between 22 and 82 years. The whole control cohort (n = 85) was used
for comparison with SLE patients.

We applied the Kolmogorov�Smirnov test in R statistical pro-
gramming language to optimize the similarity of the age distribution
in the control group with each of the disease groups [43,44]. Linear
scanning of age thresholds from low to high identifies a age threshold
with a minimum �log10(p value). In the neighborhood of the mini-
mum, we have insufficient evidence to claim that the two distribu-
tions are different. The scanning was performed with steps of one
year (Fig. S1). The minimum is where the two distributions should
have the highest similarity. However, we are also interested in opti-
mizing the number of controls to obtain better statistical sampling.
We therefore apply the threshold that gives the largest number of
controls and with a two-sided Kolmogorov�Smirnov test statistic
below 0.01 for CVD (Fig. S1a) and IS (Fig. S1b). This resulted in the
age threshold �50 years for CVD and �55 for IS. The minimum
�log10 P value for SLE was obtained when using all controls (Fig.
S1c). These age matched control groups were used together with
data from diseased groups for constructing the partial least square
(PLS) models and for the principal component analysis (PCA) analysis
to ensure that the observed separation was not age related. For linear
discriminant analysis (LDA) and linear regression analysis all controls



Table 1
Baseline characteristics of the analyzed lipid cohort. NA indicates Not Available.

Control (N=85) CVD1 (N=67) CVD2 (N=76) CVD3 (N=14) CVD4 (N=39) CVD5 (N=21) IS (N=21) SLE (N=104) Total (N=427)

Sex
Missing 0 1 0 0 0 0 0 0 1
F 52 (61%) 36 (54%) 22 (29%) 3 (21%) 11 (28%) 3 (14%) 14 (67%) 95 (91%) 236 (55.2%)
M 33 (39%) 30 (45%) 54 (71%) 11 (79%) 28 (72%) 18 (86%) 7 (33%) 9 (9%) 190 (44.5%)
Age (Years)
Missing 0 1 0 0 0 0 0 9 10
Mean (SD) 45 (17) 69 (12) 67 (12) 67 (10) 67 (14) 63 (12) 74 (10) 47 (16) 59 (17)
Range 22 - 82 36 � 90 33-87 50-79 36-92 37-87 49-94 20-82 20-94
Weight (kg)
Mean (SD) 68 (14) 73 (14) 77 (13) 80 (14) 75 (14) 80 (12) NA NA 74 (14)
valid (missing) 83 (2) 66 (1) 73 (3) 13 (1) 37 (2) 21 (0) 0 (22) NA 293 (31)
Height (cm)
Mean (SD) 167 (9) 164 (9) 167 (9) 170 (7) 165 (9) 171 (9) NA NA 166 (8.8)
valid (missing) 80 (5) 66 (1) 73 (3) 13 (1) 37 (2) 21 (0) 0 (22) NA 290 (34)
BMI (kg/m2) 104
Mean (SD) 25 (4) 27 (4) 27 (4) 28 (4) 28 (5) 28 (4) NA NA 26.7 (4.3)
valid (missing) 80 (5) 66 (1) 73 (3) 13 (1) 37 (2) 21 (0) 0 (22) NA 290 (34)
P value vs control 0.03 0.004 0.04 0.02 0.02 NA NA
Hypertension
No 70 (82%) 16 (24%) 11 (14%) 2 (14%) 7 (18%) 6 (29%) 4 (19%) 13 (12%) 129
Yes 15 (18%) 51 (76%) 64 (84%) 12 (86%) 30 (77%) 15 (71%) 17 (81) 0 (0%) 204
Missing 0 (0%) 0 (0%) 1 (1%) 0 (0%) 2 (5%) 0 (0%) 0 (0%) 91 (88%) 94
Dyslipidemia
No 85 (100%) 24 (36%) 17 (22%) 3 (21%) 16 (41%) 14 (67%) 10 (48%) 13 (12%) 182
Yes 0 (0%) 43 (64%) 58 (76%) 11 (79%) 21 (54%) 7 (33%) 11 (52%) 0 (0%) 151
Missing 0 (0%) 0 (0%) 1 (1%) 0 (0%) 2 (5%) 0 (0%) 0 (0%) 91 (88%) 94
Statin Use
No 79 (93%) 27 (40%) 18 (24%) 2 (14%) 15 (38%) 13 (62%) 15 (71%) 75 (72%) 273
Yes 6 (7.1%) 37 (55%) 49 (64%) 11 (79%) 18 (46%) 5 (24%) 6 (29%) 24 (23%) 132
Missing 0 (0%) 3 (5%) 9 (12%) 1 (7%) 6 (15%) 3 (14%) 0 (0%) 5 (4.8%) 22
Anti-Hypertensives
No 70 (82%) 33 (49%) 14 (18%) 1 (7%) 0 (0%) 0 (0%) 8 (38%) 104 (100%) 230
Yes 15 (18%) 31 (46%) 42 (55%) 2 (14%) 2 (5%) 0 (0%) 13 (62%) 105
Missing 0 (0%) 3 (5%) 20 (26%) 11 (79%) 37 (95%) 21 (100%) 0 (0%) 92
Anti-coagulant
No 85 (100%) 40 (60%) 10 (13%) 0 (0%) 1 (3%) 0 (0%) 14 (67%) 104 (100%)
Yes 0 (0%) 23 (34%) 47 (62%) 3 (21%) 1 (3%) 0 (0%) 7 (33%)
Missing 0 (0%) 4 (6%) 19 (25%) 11 (79%) 37 (95%) 21 (100%) 0 (0%)
Immuno-supressors
No 85 (100%) 67 (100%) 76 (100%) 14 (100%) 39 (100%) 21 (100%) 21 (100%) 42 (40%) 365
Yes 56 (54%) 56
Missing 6 (6%) 6
Anti-diabetic
No 84 (99%) 52 (78%) 46 (60%) 9 (64%) 27 (69%) 18 (86%) 15 (71%) 98 (94%) 349
Yes 1 (1 %) 14 (21%) 30 (39%) 4 (29%) 12 (31%) 3 (14%) 6 (29%) 1 (1%) 71
Missing 1 (1%) 0 (0%) 1 (7%) 0.00% 0 (0%) 5 (4.8%) 7
Steroids
No 85 (100%) 67 (100%) 76 (100%) 14 (100%) 39 (100%) 21 (100%) 21 (100%) 30 (29%) 353
Yes 69 (66%) 69
Missing 5 (5%) 5
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were used. For linear regression the models were adjusted for age,
gender and statin use. Statin use was defined based on clinical
records.

2.5. Lipid extraction for mass spectrometry lipidomics

Mass spectrometry-based lipid analysis was performed at Lipo-
type GmbH (Dresden, Germany) as previously described [38]. Briefly,
plasma was diluted 1:50 v/v in water (LC-MS grade, Sigma) and 50
mL of this diluted plasma (equivalent to 1 mL of undiluted plasma)
was mixed with 130 mL of 150 mM ammonium bicarbonate solution
and 810mL of methyl tert-butyl ether/methanol (7:2, v/v) was added.
21 mL of an internal standard mixture was pre-mixed with the mix-
ture of organic solvents. As internal standards cholesterol (Chol) D6,
cholesteryl ester (CE) 20:0, ceramide (Cer) 18:1;2/17:0, diacylglycerol
(DAG) 17:0/17:0, phosphatidylcholine (PC) 17:0/17:0, phosphatidyl-
ethanolamine (PE) 17:0/17:0, lysophosphatidylcholine (LPC) 12:0,
lysophosphatidylethanolamine (LPE) 17:1, triacylglycerol (TAG)
17:0/17:0/17:0, and sphingomyelin (SM) 18:1;2/12:0 were used. The
plate was then sealed with a teflon-coated lid, shaken at 4 °C for
15 min, and spun down (3000 g, 5 min) to facilitate separation of the
liquid phases. One hundred microliters of the organic phase was
transferred to an infusion plate and dried in a speed vacuum concen-
trator. Dried lipids were re-suspended in 40 mL of 7.5 mM ammo-
nium acetate in chloroform/methanol/propanol (1:2:4, v/v/v) and the
wells were sealed with an aluminum foil to avoid evaporation and
contamination during infusion. All liquid handling steps were per-
formed using a Hamilton STARlet robotic platform with the Anti
Droplet-Control feature for pipetting of organic solvents.

2.6. MS data acquisition

Details of MS data acquisition have been described by Surma et al
[38]. Samples were analyzed by direct infusion in a QExactive mass
spectrometer (Thermo Scientific) equipped with a TriVersa NanoMate
ion source (Advion Biosciences). 5 mL were infused with gas pressure



Fig. 1. Scheme of the study design. Eighty-five healthy control subjects, two-hundred
seventeen cardiovascular disease (CVD) subjects (including acute myocardial infarction
with and without ST-elevation in ECG and stable and unstable angina pectoris), twenty
one acute ischemic stroke (IS) subjects and one hundred four systemic lupus erythe-
matosus (SLE) patients were included in this study. Individual data [age, height,
weight, body mass index (BMI), clinical history and medication] were collected from
all cohorts at baseline. Blood samples from all subjects were obtained and processed
for plasma isolation. Then, plasma lipid extraction was performed for mass spectrome-
try lipidomics (shotgun lipidomics) to obtain the lipid profile of all individuals involved
in this study. The obtained data were analysed by PCA, LDA and PLS models were
tested for classification performance on independent data set. The R package limma
was used for statistical analysis of differential regulated lipids.
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and voltage set to 1.25 psi and 0.95 kV, respectively. Samples were
analyzed in both positive and negative ion modes with a resolution
of Rm/z=200 = 280000 for MS and Rm/z=200 = 17,500 for Tandem mass
spectrometry (MSMS) experiments, in a single acquisition. MSMS
was triggered by an inclusion list encompassing corresponding MS
mass ranges scanned in 1 Da increments. Both MS and MSMS data
were combined to monitor CE, DAG and TAG ions as ammonium
adducts; PC, ether phosphatidylcholine (PC O-), as acetate adducts;
and PE, ether phosphatidylethanolamine (PE O-) and phosphatidyli-
nositol (PI) as deprotonated anions. MS only was used to monitor LPE
as deprotonated anion; Cer, SM and LPC as acetate adducts and cho-
lesterol as an ammonium adduct.
Fig. 2. Principal component analysis using all 596 selected lipids as input. Plot of the first
and second principal component for a) IS vs control (n=46), b) CVD1 vs control_50
(n=101), c) CVD2 vs control_50 (n=110), d) CVD3 vs control_50 (n=48), e) CVD4 vs con-
trol_50 (n=73), and f) CVD5 vs control_50 (n=55).
2.7. Lipid nomenclature

The following annotations were used: Lipid class-<sum of carbon
atoms>:<sum of double bonds>;<sum of hydroxyl groups>, i.e. SM-
34:1;2 means an SM lipid with 34 carbon atoms, 1 double bond and 2
hydroxyl groups in the ceramide backbone. Lipid molecular subspe-
cies annotation [45] contains additional information on the exact
identity of their fatty acids. For example PC 18:1;0_16:0;0 denotes a
phosphatidylcholine with one acyl chain having 18 carbon atoms, 1
double bond, 0 hydroxylation, and a second acyl chain with 16 carbon
atoms, 0 double bonds, 0 hydroxylation. The exact position of the
fatty acids in relation to the glycerol backbone (sn-1 or sn-2) cannot
be discriminated. CE 18:1;0 denotes a cholesteryl ester with an
18:1;0 fatty acid. Lipid identifiers of the SwissLipids database [45]
and LIPID MAPS Shorthand Notation [46] are provided in the supple-
mental dataset (Table S2).
2.8. Post-processing

Data were analyzed with in-house developed lipid identification
software based on LipidXplorer [47,48]. All information concerning
the characteristic fragments used to identify lipid classes is shown in
Table S3. The mass errors for precursor ion was 1ppm, for fragment
ions around 5 ppm. Data post-processing and normalization were
performed using an in-house developed data management system.
This management system is programed in PHP, C++ and Javasript and
contains in-house developed deconvolution and normalization algo-
rithms. Only lipid identifications with a signal-to-noise ratio >5, and
a signal intensity 5-fold higher than in corresponding blank samples
were considered for further data analysis. Using 8 reference samples
per 96-well plate batch, lipid amounts were corrected for batch varia-
tions. Amounts were also corrected for analytical drift, if the p-value
of the slope was below 0.05 with an R2 greater than 0.6 and the rela-
tive drift was above 5%. The full data set contained quantitative infor-
mation from 623 lipids. Lipids with a concentration less than 0.5 mM
were considered “not analyzable” (NA) and, for the purposes of the
present work were considered to be at half of the minimum detect-
able value and zero variance lipids were filtered out providing a data
set of 596 lipids which served as the input to subsequent multivariate
analyses.

Statistical analysis was performed in R statistical programming
language. The R function seed was applied to enable producible ran-
dom number generations before each analysis. Shapiro�Wilk



Fig. 3. Significant regulated lipids across comparisons. Venn comparison of significant regulated lipids after correction of multiple testing (a) and with two fold regulation (b) for CVD
groups (n=217). c) Heatmap depicting the direction of regulation for significant regulated lipids across comparisons (n=427). d) Heatmap depicting the direction of regulation for sig-
nificant regulated lipids with more than two fold regulation across comparisons.
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normality test was applied to decide whether a Student's t-test or
Wilcoxon test should be applied.

Principal component analysis was performed by single value
decomposition in R statistical programming language. All the lipid
expression values were quantile normalized with the “normalize
quantiles” function from the library preprocessCore. The quantitative
values were added one, log2 transformed and subtracted by row
means. The base R function “svd” were used to calculate principal
components. The two main components were plotted in a scatter
plot using R.

Significant regulated lipids were defined by the R package “limma
version 3.42.0” [49]. The data expression values obtained by MS were
added one and log2 transformed. Next the quantitative values were
normalized across samples using robust quantile normalization [50].
Both the raw and the quantile normalized values were analyzed by
the R package “limma version 3.42.0” to determine significant regu-
lated lipids between control and patient cohorts. Linear regression
models included terms to correct for gender and statin treatment and
only age matched controls were included for statistical regulation
analysis involving IS and CVD cases. All controls were included for
comparison with the SLE group. The SLE group was sub divided into
two groups according to the Systemic Lupus International Collaborat-
ing Clinics (SLICC) group criteria (SLICC � 4 versus SLICC < 4) [51].
Statistical differential regulated lipids were determined using the R
package “limma version 3.42.0” and p values were adjusted for multi-
ple testing by the method of Benjamini and Hochberg [52]. Principal
component analysis was performed using R base functions on cen-
tered quantile normalized quantification values. Overlap between
significant regulated lipids was performed with the R package “Ven-
nDiagram”.
2.9. Supervised classification

LDA was performed using the R package “caret version 6.0.84”
[53] as interface to “MASS version 7.3.51.4”. LDA was performed
using either all 596 zero variance filtered lipids or 206 lipids selected
with more than 50% non-NAs per clinical group. Additionally, the
parameters for training and testing of LDA were set to remove lipids
with total intensity across all samples below 30. The value 30 was
obtained by stepwise optimization to establish best possible separa-
tions. The correlation cut off was set to 1 which means that correlated
variables were not eliminated (caret parameter pair-wise absolute
correlation cutoff). Setting the correlation cut off slightly lower, e.g.
0.9-1 had no effect on the separation in the LDA plots. The results
from the two approaches resulted in similar classification



Fig. 4. Frequency of lipid classes among significant regulated lipids. Significant up (a) and
down (b) regulated lipid classes for CVD versus control (n=217). Significant up (c) and
down (d) regulated lipid classes for statin treated versus not-treated controls (n=85).
Red bars indicate significant regulated lipid class frequencies after correction of multi-
ple testing. Blue bars indicate significant regulated lipid class frequencies after correc-
tion of multiple testing and filtering for at least two-fold regulation Panel (a) includes
sterol hemi-esters (SHE), the end product of oxidation of polyunsaturated fatty acid
esters of cholesterol.
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performance and for simplicity only the results from the 596 zero
variance filtered lipids is presented.

PLS analysis was performed using the R package “caret version
6.0.84” [53] as interface to “pls version 2.7.1“. The full data set 427
individuals were split into disease groups with age matched controls
as described in section “Definition of age matched controls”. Training
and test sets were prepared by first selecting the appropriate controls
for the classification task involving CVD, IS and SLE. For each of these
pairwise comparisons the smallest group sizes were determined. The
size of the training data was two times 75% of the smallest group
size. The function “strata” from the library “sampling” were used to
ensure a random and balanced training set containing an equal num-
ber of cases of controls and diseased. For CVD, 26 controls with age
�50 years and 26 CVD cases were selected as a training set. The
remaining data set were used as a validation set (8 controls and 191
CVD). This analysis was also performed using the full control cohort
or an age threshold above 37 years to have more controls in the vali-
dation set. These additional analyses are not presented here but the
classification performance was similar. The training set consisted of
16 controls �55 and 16 IS cases for the classification of IS and control.
The validation set for IS versus control contained 9 controls and 5 IS
cases. For classification of SLE versus control, 64 controls and 64 SLE
cases were used as training data. The remaining 21 controls and 40
SLE cases were used as validation set. The data were preprocessed
before PLS model training. The “caret” function “nearZeroVar” identi-
fied features with near zero variance which were filtered out. Corre-
lation between features were calculated with base R function “cor”
and features with a correlation above 75% identified with the “caret”
function “findCorrelation”were filtered out.

The caret preprocessing parameters specified were: "center �
subtracts the mean from predictor values”, and "scale � divide pre-
dictor values with the standard deviation”. The model was optimized
by 10-fold cross validation repeated 10 times using accuracy as the
metric for optimization. ROC curves and area under the curve were
estimated using the R package “pROC” [54] for model performance
evaluation on the left out validation set.

2.10. Funding

Funding sources had no role in study design, data collection, data
analysis, interpretation, decision to publish or preparation of the
manuscript.

3. Results

Baseline characteristics: Table 1 summarizes the baseline charac-
teristics. The CVD cohort analyzed in this study consisted of 217 par-
ticipants with mean age of 67 years (range 33�92 years). A total of
21 IS patients were included with a similar age range as the CVD
patients. 104 SLE patients were also included in this study. Statistical
comparisons were in all cases performed with age-matched controls.

Lipidomic analysis: Based on a single shot MS analysis of 1 mL of
plasma, 623 lipids spanning 15 lipid classes were identified and
quantified. The analysis presented in the current study used only 596
of these lipids and demonstrated, as discussed below, that accurate
classification of SLE, IS, CVD and CVD sub-groups from controls was
achievable in spite of the fact that there were several shared dysregu-
lated lipids among the different cohorts.

Unsupervised analysis: PCA based on all 596 selected lipids pro-
vided a reasonable separation between aged-matched controls ver-
sus IS, CVD1, CVD2, CVD3, CVD4 and CVD5 (Fig. 2a�f). CVD4 and
CVD5 are almost fully separable from controls based on the first two
principal components. CVD3 versus control resulted in the poorest
separation by the first two principal components. Depending on the
condition either PC1 or PC2 provided the most separation. This
strongly suggests that the largest or second largest variance
component in lipid abundance correlate with these disease condi-
tions. Notably, this PCA analysis was performed using quantitative
values from all lipids without any biased pre-selection of lipids
known to associate to CVD and IS.

Association of lipids with clinical diagnosis. Comparison of SLE sub-
groups SLE_SLICC criteria� 4 vs< 4 resulted in no significant lipids after
correction of multiple testing (Table S4). Pairwise comparison between
age matched controls and the patient groups adjusted for gender and
statin use revealed the following number of significant dysregulated lip-
ids after correction of multiple testing (First value: padjusted<0.05 / Sec-
ond value: padjusted <0.05 and at least two-fold regulated, Table S4):
179/15 CVD1, 175/20 CVD2, 98/21 CVD3, 149/24 CVD4, 136/20 CVD5,
128/18 IS and 113/2 SLE. Among controls the number of significant regu-
lated lipids after correction of multiple testing (padjusted <0.05/pad-
justed <0.05 and at least two-fold regulated) were 19/4 when
comparing controls with and without statin treatment (Table S4). Only
about 2�20% of the significant (dys)regulated lipids displayed an effect
size bigger or equal to two-fold, prompting the question if the lipids with
small effect size are diagnostically relevant.

Therefore, Venn diagrams were used to compare the overlap of
significant dysregulated lipids (Fig. 3a) and significant dysregulated
lipids with an effect size more than two-fold (Fig. 3b). We observed
that a considerable number of significant dysregulated lipids with
effect size less than two-fold were shared across pathological groups
(Fig. 3ab). Heatmaps were constructed to address the direction of the
shared dysregulated lipids (Fig. 3cd). These heatmaps only depict lip-
ids that are regulated in more than one pairwise comparison. The
direction of dysregulation of lipids displays large similarities for the
CVD, IS and SLE groups. In contrast, lipids regulated between controls
with and without statin treatment displayed a reverse pattern of reg-
ulation compared to the pathological groups (Fig. 3cd). Next, the fre-
quency of lipid classes of the significant regulated lipids for
pathological groups versus statin regulation were compared
(Fig. 4abcd). Predominantly the lipid classes PC, PE, CE, SM including



Fig. 5. Separation of the disease groups by LDA based on selected lipids. a) LDA plots demonstrating separation of CVD, SLE, IS and control. b) LDA base separation of CVD groups and
control samples. c) First LDA component versus SLE and control. d) First LDA component versus IS and control. Shapiro�Wilk normality test implied that the data in d was not nor-
mal distributed for controls and therefore a Wilcoxon test was applied for this specific case.
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Chol were up-regulated in the pathological conditions (Fig. 4a) which
to some extent match the statin down-regulation of CE and Chol
(Fig. 4d). Similarly, the down regulation of lipid classes TAG, PC, PE
and DAG in pathological conditions match, to some degree, the
observed up-regulation of TAG, PE, DAG and Cer for statin treated
control subjects.

In general, pairwise comparison for disease groups or disease sub-
groups versus control resulted in statistical differences in lipid expression
(Table S4). This was also the case when different disease groups were
compared pairwise against each other. However, sub-comparisons of
CVD (e.g. CVD1 versus CVD5) or SLE (e.g. SLICC � 4 versus SLICC < 4)
resulted in fewer significant regulated lipids after correcting for multiple
testing. Especially, SLICC � 4 versus SLICC < 4 comparison resulted in no
significant regulated lipids after correction for multiple testing.

Supervised analysis. Preliminary LDA based on the 596 selected lip-
ids and all data displayed strong potential for building classifiers for
separating the pathological groups and control (Fig. 5). Even the indi-
vidual CVD sub-groups were fairly effectively separated in the LDA
plots (Fig. 5ab). Analyzing the CVD groups and controls separately
further supported the potential of lipids to stratify CVD severity
groups (Fig. 5b). LDA separates SLE from controls with a pvalue <

2.2e-16 according to student T test (Fig. 5c). Fig. 5d depicts the LDA
plot for controls versus IS. The first LDA component significantly sep-
arates IS patients from controls (p value < 1.5e-12, Wilcoxon test).
The PCA (Fig. 2) and LDA (Fig. 5) plots encouraged us to build and test
PLS models. As a proof-of-concept three PLS classifiers with high
classification performance when tested on an independent data set
were established (Fig. 6).

The optimal number of PLS component for separation of CVD and
controls was four (Fig. 6a). The right panel (Fig. 6b) displays the 20
most important lipids contributing to the PLS components. The width
of each bar is indicative of the lipid�s importance in the model. The
optimal PLS component for IS versus control were four (Fig. 6c) and
the 20 highest ranked lipids in terms of importance are depicted in
the right panel (Fig. 6d). For SLE versus controls five PLS components
were optimal (Fig. 6e). The 20 most important lipids for SLE (Fig. 6f)
displayed some similarity to the most relevant lipids for IS versus
control (Fig. 6bdf). For example, the lipids SM 32:1;2, LPC 22:6;0, SM
36:1;2, and PC O� 18:0;0�20:4;0 were including in the models for IS
and SLE. The three PLS models for separating IS, CVD and SLE from
age matched controls was validated by using a validation set left out
from the training and optimization of the PLS models (Fig. 7). The
ROC curve for classification performance of CVD versus controls is
depicted in Fig. 7a. The area under the curve was 0.95. The confusion
matrix depicted in Fig. 7b indicates that 187 out of 199 of the left-out
data set were correctly classified. The model for CVD1 versus controls
displayed a slightly worse classification performance with five out of
52 misclassified (Accuracy � 90%, area under the curve was 0.97).
Although, LDA based on all data displayed partial to complete separa-
tion for CVD1 versus CVD2 (Fig. 5ab) the PLS model was not much
better than random when tested on the independent data set (area
under the ROC curve=0.53).



Fig. 6. Training of PLS models. Left panel: Optimal number of PLS components for model based on a) CVD versus control, c) IS versus control, and e) SLE versus control. Right panel (b,
d,f): Indicate the 20 most important lipids in the PLS models. Red labels indicate overall higher abundance in disease whereas green labels indicate overall higher abundance in con-
trols.
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The ROC curve for the PLS model for classification of IS versus con-
trols when tested on the independent validation data set is depicted
in Fig. 7cd. The IS model misclassified zero patients in the indepen-
dent validation out of a total of 14 samples (Accuracy=100%). The
ROC curve for the PLS model for classification of SLE versus controls
displayed an area under the curve of 1 and no misclassified subjects.
The PLS model for SLE versus control demonstrated slightly improved
classification performance compared to CVD versus controls with a
total of 3 misclassified cases out of 61 (Fig. 7ef).

In conclusion, we present the accuracy of separation on indepen-
dent lipidomics test data, of the cohorts studied � namely, control,
SLE, IS, and CVD1 through CVD5. The accuracy of separating SLE and
CVD cases was above 0.91. The accuracy of separating IS versus SLE
and IS versus CVD was 0.78. Fig. 8 summarizes pairwise classification
accuracies for all CVD subgroups versus controls when evaluated on
an independent test data set. All CVD cases were separated from the
controls with accuracies above 0.80. The high accuracies obtained in
our study may result from the higher number of lipids profiled. Pair-
wise classifications of CVD1 versus CVD2 and CVD4 versus CVD5
resulted in an accuracy which was only slightly better than random.
These pairwise classification accuracies are concurrent with the
number of significantly identified lipids in the pairwise comparisons
obtained from the linear regression models (Table S4). Overall, these
findings suggest that plasma lipidomics profiles have the potential to
accurately distinguish chronic inflammatory diseases from controls
and that the lipidomic profiles are characteristics of the pathophysio-
logical states.

4. Discussion

Blood plasma is the medium through which the physiological
steady state of lipid distribution in the body is maintained. These lip-
ids may be of dietary or auto-synthetic origin but are also the result
of degradative chemical processes (oxidation, lysis, modification in
the plasma, etc.) and cell death due to acute or chronic processes
such as inflammation. The exact steady state concentration of each
lipid in the plasma is therefore a combination of dietary, physiologi-
cal-chemical, genetic, and patho-physiological states. Many lipidic
products are known to positively or negatively influence inflamma-
tory processes [3,4]. Lipidomics may therefore hold a promise as a
valuable tool for identifying and distinguishing between different
patho-physiological states. There are perhaps well over a thousand



Fig. 7. Classification performance illustrated with ROC curves and confusion matrix for a) CVD versus control, b) IS versus control, and c) SLE versus control.
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different lipids and their derivative products in the plasma. Therefore,
the more lipids are identified and quantified, the better will be our
capacity to diagnose the physiological state. This view seems to be
reinforced by recent developments [55].

We have, therefore, used lipidomic data on three separate cohorts
� a cohort consisting of people who suffer from SLE, a cohort of peo-
ple who suffer from atherosclerosis-related vascular disease (CVD
and IS), and an age-matched Control cohort characterized by the fact
that they never sought medical help for any of the disease states of
the other two cohorts. The CVD cohort consisted of five patient
groups, CVD-1 through CVD-5, as described earlier. The patients of
CVD, IS, and SLE have a common characteristic � chronic inflamma-
tion � but distinct primary etiologies. Inflammation plays a major
role in the genesis of atherosclerotic vascular disease, which under-
lies the vast majority of clinical manifestations of coronary and cere-
bral arterial disease represented in the studied population.
Inflammatory cells and cytokines are present from the early stages of
atherosclerosis, contributing decisively to its development [56,57].
The infiltration of atherogenic low density lipoprotein-cholesterol
(LDL-C) particles from the endothelium modified by mechanical and
oxidative stress associated with several vascular risk factors triggers
the inflammatory response. Monocytes bind to the endothelium
expressing adhesion molecules and chemokines direct their migra-
tion into the intima followed by differentiation into macrophages
and phagocytosis of LDL-C particles with formation of foam cells.
Once the process of atheroma formation begins, inflammation promotes
progression and instability of the atheroma leading to rupture and
thrombus formation triggering the vascular event. SLE is an autoimmune
disease characterized by aberrant B and T cell responses [58,59] with
increased production of autoantibodies [60]. Although inflammation is
also involved and an interferon signature is associated with SLE [61] a
dysfunctional adaptive immune system is mainly responsible for the
pathogenesis of this disease. Overall, immune dysfunction contributes to
accelerated atherosclerosis in patients with SLE [62].

The comparison of these two patho-physiological states therefore
provides an efficient way to evaluate the ability of lipidomics to



Fig. 8. Summary of classification performance for all pairwise comparison of control and
CVD1 to CVD5. The heatmap depicts the classification accuracy obtained on an indepen-
dent test set for each of the pairwise comparisons.
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distinguish between them and possibly serve eventually as a diagnos-
tic tool. A total of 596 lipids divided into 15 lipid classes were ana-
lyzed using shotgun lipidomics and adequate statistical methods
were used to analyze the results. We note that our aim has not been
to identify the lipids characteristic of one pathological state or
another, although some conclusions in this regard may also be
drawn, but rather to use the data to create distinct diagnostic groups
that correspond with the distinct pathological states.

The improvement in lipid identification and quantification from
plasma samples presented in this study led to improved classification
performance of SLE, CVD and CVD sub-groups, and IS from controls.
This reinforces the potential of plasma lipidomic profiles as bio-
markers for cardiovascular risk stratification proposed in previous
studies [24]. We observed clear commonalities between dysregulated
lipids in CVD and in IS and to a lesser extent in SLE (Fig. 3cd). This
observation supports the idea of a common etiology for CVD and IS
which involve atherosclerotic lesions in blood vessels in both cases. It
also may partially explain why CVD is overrepresented in patients
with SLE and SLE patients demonstrate accelerated atherosclerosis
[63-66]. The reverse regulation observed for lipids in statin treated
versus CVD and IS suggests that statins to some extent stabilize the
lipid profiles towards lipid profiles of disease-free controls. Neverthe-
less, the most frequent up-regulated lipid classes in CVD were only
moderately affected by statin (Fig. 4a versus 4d). Chol and CE were
observed lower in controls treated with statin which is in concor-
dance with the known effect on statin as an inhibitor of HMG-CoA
reductase [67]. PE, an anti-inflammatory lipid, was higher in statin
treated and in line with statins anti-inflammatory properties. TAG
and DAG were observed higher in controls treated statin than with-
out. Higher dose of statin is reported to lower TAG and DAG [67]. The
opposite pattern observed for TAG and DAG in our study might be
caused by the cofounding factor introduced by the tendency to treat
patients with high TAG and DAG with statins. Ideally this experiment
should be performed as a randomized control study. We observed a
high frequency of the lipid class PC up regulated in CVD patients. PCs
are described as anti-inflammatory which may appear counterintui-
tive. However, a recent study found a causal link between obesity-
associated increase in de novo PC synthesis and PC turnover and pro-
inflammatory activation of adipose tissue macrophages [68]. The
large number of dysregulated PCs does not appear affected by statin
treatment and may constitute attractive pharmaceutical targets for
future treatment modalities. CVD1 constitutes patients who complain
about chest pain but no pathological diagnostic indicators for CVD
were identified. The trained classifiers on lipid abundance were,
however, able to distinguish between control and CVD1. However, it
must be noted that the classification between CVD1 and CVD2 were
basically close to random. This suggests that lipid profiling is the first
clinical indicator that can diagnose CVD1 individuals. This finding
may have both therapeutic and diagnostic impact and must be fur-
ther explored in future studies.

In conclusion, we present the accuracy of separation on indepen-
dent lipidomics test data, of the cohorts studied � namely, control,
SLE, IS, and CVD1 through CVD5. The accuracy of separating SLE and
CVD cases was above 0.91. The accuracy of separating IS versus SLE
and IS versus CVD was 0.78. Fig. 8 summarizes pairwise classification
accuracies for all CVD subgroups versus controls when evaluated on
an independent test data set. All CVD cases were separated from the
controls with accuracies above 0.80. The high accuracies obtained in
our study may result from the higher number of lipids profiled. How-
ever, the cohorts used were not ideal in terms of sex distribution
across CVD conditions and controls. Furthermore, the age matched
controls had a slightly lower average age than the CVD and stroke
groups. No statistical differences between the Control groups and
CVD groups for body mass index (BMI) was identified (Table 1). The
samples for each individual disease condition were also not obtained
frommultiple centers which may introduce bias.

Pairwise classifications of CVD1 versus CVD2 and CVD4 versus
CVD5 resulted in an accuracy which was only slightly better than ran-
dom. These pairwise classification accuracies are concurrent with the
number of significantly identified lipids in the pairwise comparisons
obtained from the linear regression models (Table S4). Overall, these
findings suggest that plasma lipidomics profiles have the potential to
accurately distinguish chronic inflammatory diseases from controls
and that the lipidomic profiles are characteristics of the pathophysio-
logical states. The necessary criterion is that the lipidomic data con-
tain as many lipids as possible. We suggest that, given the ease of
shotgun lipidomic quantification of a very large number of lipids in
plasma and the high accuracy of the separation and identification of
chronic inflammatory pathologies upon analysis of the lipidomic
data, the methods described in this work could be a valuable tool in
early diagnostic methodology.

Study limitations and caveats. This study is limited by the number
of samples per group especially when subdividing into cardiovascular
subgroups. Therefore, the list of lipids in Fig. 6 should be considered
as indicative and not definitive. Gender balance is unbalanced across
stroke and cardiovascular disease (see Table 1). For linear regression
models statin use, age and gender were corrected for in the linear
regression model. The age distributions of controls were optimized
for similarity to the age distribution of the disease groups for the
analyses involving PCA and PLS models. Females were more preva-
lent in controls (61.2%), IS (67%) and SLE (91%) and males more preva-
lent in CVD (65% males). Therefore, gender might constitute a
confounding factor in the separation of the disease groups from con-
trols in the PCA and PLS analysis. This might especially be a problem
for the SLE disease group. However, linear regression models with or
without the gender variable did not suggest gender to have a major
effect on the number of significant regulated lipids. For example, the
number of significant regulated lipids after correction of multiple
testing were 201 and 203 with and without correction for gender. In
the case of SLE versus control the number of significant regulated lip-
ids after correction of multiple testing were 113 and 140 with and
without gender correction. The samples for each individual disease
condition were not obtained from multiple centers which may intro-
duce bias.

The reverse regulation of lipids when comparing statin treated
controls with CVD and IS is an explorative result and the observed
regulation might originate due to confounding factors. This observa-
tion should preferably be validated in a randomized control study.
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We understand the present study as an exploratory preliminary
study and clearly more inflammatory diseases need to be compared.
Recommendations with regard to diagnostics will require much
larger cohorts with better matching of age, sex, statin use, BMI, etc.
This will be a process that will require many more years and prefera-
bly collaborative work between many laboratories.
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